skip to main content

Author Archive

Are Trees Talking Underground? For Scientists, It’s in Dispute.

Posted on: November 7th, 2022 by cnstewa1 No Comments

From Ted Lasso to TED Talks, the theory of the “wood-wide web” is everywhere, and some scientists argue that it is overblown and unproven.

  • Nov. 7, 2022Updated 8:18 a.m. ET

Justine Karst, a mycologist at the University of Alberta, feared things had gone too far when her son got home from eighth grade and told her he had learned that trees could talk to each other through underground networks.

Her colleague, Jason Hoeksema of the University of Mississippi, had a similar feeling when watching an episode of “Ted Lasso” in which one soccer coach told another that trees in a forest cooperated rather than competed for resources.

Few recent scientific discoveries have captured the public’s imagination quite like the wood-wide web — a wispy network of fungal filaments hypothesized to shuttle nutrients and information through the soil and to help forests thrive. The idea sprouted in the late 1990s from studies showing that sugars and nutrients can flow underground between trees. In a few forests, researchers have traced fungi from the roots of one tree to those of others, suggesting that mycelial threads could be providing conduits between trees.

These findings have challenged the conventional view of forests as a mere population of trees: Trees and fungi are, in fact, coequal players on the ecological stage, scientists say. Without both, forests as we know them wouldn’t exist.

Scientists and nonscientists alike have drawn grand and sweeping conclusions from this research. They have posited that shared fungal networks are ubiquitous in forests around the world, that they help trees talk to each other and, as “Ted Lasso’s” Coach Beard articulated, that they make forests fundamentally cooperative places, with trees and fungi united in common purpose — a dramatic departure from the usual Darwinian picture of interspecies competition. The concept has been featured in numerous media reportsTV shows and best-selling books, including a Pulitzer Prize winner. It even shows up in “Avatar,” the highest-grossing movie of all time.

And the theory could be starting to influence what happens in real forests. Some scientists, for example, have suggested managing forests explicitly to protect fungal networks.

Justine Karst, a mycologist at the University of Alberta, during a visit to Bunchberry Meadows near Edmonton. She was worried when her son came from 8th grade and told her trees talk underground.Credit…Todd Korol for The New York Times

But as the wood-wide web has gained fame, it has also inspired a backlash among scientists. In a recent review of published research, Dr. Karst, Dr. Hoeksema and Melanie Jones, a biologist at the University of British Columbia, Okanagan, found little evidence that shared fungal networks help trees to communicate, swap resources or thrive. Indeed, the trio said, scientists have yet to show that these webs are widespread or ecologically significant in forests.

For some of their peers, such a reality check is long overdue. “I think this is a very timely talk,” said Kabir Peay, a mycologist at Stanford University, about a presentation Dr. Karst recently gave. He hoped it could “reorient the field.”

Others, however, maintain that the wood-wide web is on firm ground and are confident that further research will confirm many of the hypotheses proffered about fungi in forests. Colin Averill, a mycologist at ETH Zurich, said that the evidence Dr. Karst marshaled is impressive. But, he added, “the way I interpret the totality of that evidence is completely different.”

Most plant roots are colonized by mycorrhizal fungi, forming one of Earth’s most widespread symbioses. The fungi gather water and nutrients from the soil; they then swap some of these treasures with plants in exchange for sugars and other carbon-containing molecules.

David Read, a botanist then at the University of Sheffield, showed in a 1984 paper that compounds labeled with a radioactive form of carbon could flow via fungi between lab-grown plants. Years later, Suzanne Simard, then an ecologist with the British Columbia Ministry of Forests, demonstrated two-way carbon transfer in a forest between young Douglas fir and paper birch trees. When Dr. Simard and her colleagues shaded Douglas firs to reduce how much they photosynthesized, the trees’ absorption of radioactive carbon spiked, suggesting that underground carbon flow could boost young trees’ growth in the shady understory.

Dr. Simard and colleagues published their results in 1997 in the journal Nature, which splashed it on the cover and christened the discovery the “wood-wide web.” Soon after, a group of senior researchers criticized the study, saying it had methodological flaws that confounded the results. Dr. Simard responded to the critiques, and she and her colleagues designed additional studies to address them.

Over time, the criticisms faded, and the wood-wide web gained adherents. Dr. Simard’s 1997 paper has garnered almost 1,000 citations and her 2016 TED Talk, “How trees talk to each other,” has been viewed more than 5 million times.

In his book “The Hidden Life of Trees,” which has sold more than 2 million copies, Peter Wohlleben, a German forester, cited Dr. Simard when describing forests as social networks and mycorrhizal fungi as “fiber-optic internet cables” that help trees inform each other about dangers such as insects and drought.

Scenes from Rowan Oak in Oxford, Miss. Advocates of the wood-wide web theory believe evidence will mount in its favor. “If you ask me if in the future, we will be showing that trees actually can communicate,” one said.Credit…Robert Wayne Lewis for The New York Times

Subterranean forest research has continued to grow, too. In 2016, Tamir Klein, a plant ecophysiologist then at the University of Basel and now at the Weizmann Institute of Science in Israel, extended Dr. Simard’s research into a mature Swiss forest of spruce, pine, larch and beech trees. His team tracked carbon isotopes from one tree to the roots of other nearby trees, including different species, in an experimental forest plot. The researchers attributed most of the carbon movement to mycorrhizal fungi but acknowledged they had not proven it.

Dr. Simard, who has been at the University of British Columbia since 2002, has led further studies showing that large, old “mother” trees are hubs of forest networks and can send carbon underground to younger seedlings. She has argued in favor of the view that trees communicate via mycorrhizal networks and against a long-held idea that competition between trees is the dominant force shaping forests. In her TED Talk, she called trees “super-cooperators.”

But as the wood-wide web’s popularity has soared both inside and outside scientific circles, a skeptical reaction has evolved. Last year, Kathryn Flinn, an ecologist at Baldwin Wallace University in Ohio, argued in Scientific American that Dr. Simard and others had exaggerated the degree of cooperation among trees in forests. Most experts, Dr. Flinn wrote, believe that groups of organisms whose members sacrifice their own interests on behalf of the community rarely evolve, a result of the powerful force of natural selection among competing individuals.

Instead, she suspects, fungi most likely distribute carbon according to their own interests, not those of trees. “That, to me, seems like the simplest explanation,” she said in an interview.

Dr. Jones was a co-author of a paper in 1997 by Suzanne Simard that started the idea of the wood-wide web. Credit…Jennilee Marigomen for The New York Times

Even some who once promoted the idea of shared fungal networks are rethinking the hypothesis. Dr. Jones, one of Dr. Simard’s co-authors in 1997, says she regrets that she and her colleagues wrote in the paper that they had evidence for fungal connections between trees. In fact, Dr. Jones says, they did not examine whether fungi mediated the carbon flows.

For their recent literature review, Dr. Karst, Dr. Hoeksema and Dr. Jones rounded up all the studies they could find that made claims about either the structure or the function of such underground fungal networks. The researchers focused on field studies in forests, not lab or greenhouse experiments.

In an August presentation based on the review at the International Mycorrhiza Society conference in Beijing, Dr. Karst argued that much of the evidence used to support the wood-wide web hypothesis could have other explanations. For example, in many papers, scientists assumed that if they found a particular fungus on multiple tree roots or that resources moved between trees the trees must be directly linked. But few studies ruled out alternate possibilities, for instance that resources could travel part of the way through the soil.

Some experimenters, including Dr. Karst and her colleagues, have installed fine meshes and have sometimes added trenches or air gaps between seedlings to disrupt hypothesized fungal networks and then tested whether those changes altered growth. But those tactics also reduce how much soil a seedling can directly gather nutrients or water from, or they alter the mix of fungi growing inside the meshes, making it difficult to isolate the effect of a fungal network, Dr. Karst said.

The researchers also found a growing number of unsupported statements in the scientific literature about fungal networks connecting and helping trees. Frequently, papers such as Dr. Klein’s are cited by others as providing proof of networks in forests, Dr. Karst and colleagues found, with caveats that appeared in the original work left out of the newer studies.

“Scientists,” Dr. Karst concluded in her presentation, “have become vectors for unsubstantiated claims.” Several recent papers, she notes, have called for changes in how forests are managed, based on the wood-wide web concept.

Jason Hoeksema of the University of Mississippi said a reference to the wood-wide web on “Ted Lasso” motivated him to join a challenge to the idea. He says studies don’t prove trees benefit from fungal networks.Credit…Robert Wayne Lewis for The New York Times

Dr. Karst said, “it’s highly likely” that shared fungal networks do exist in forests. In a 2012 study, Dr. Simard’s team found identical fungal DNA on the roots of nearby Douglas fir trees. The researchers then sampled soil between the trees in thin slices and found the same repeating DNA segments known as “microsatellites” in each slice, confirming that the fungus bridged the gap between the roots. But that study did not examine what resources, if any, were flowing through the network, and few other scientists have mapped fungal networks with such rigor.

Even if intertree fungal networks exist, however, Dr. Karst and her colleagues say common claims about those networks don’t hold up. For example, in many studies, the putative networks appeared to either hinder tree growth or to have no effect. No one has demonstrated that fungi distribute meaningful amounts of resources among trees in ways that increase the fitness of the receiving trees, Dr. Hoeksema said. Yet nearly all discussions of the wood-wide web, scientific or popular, have described it as benefiting trees.

Others, however, remain convinced that time will vindicate the wood-wide web.

While how ubiquitous shared fungal networks are and how important they are to tree growth remain open questions, Dr. Averill of ETH Zurich said the title of Dr. Karst’s presentation — “The decay of the wood-wide web?” — incorrectly suggests that the very concept is faulty. Instead, he hopes scientists will build on the tantalizing clues gathered so far by looking for networks in more forests. Indeed, members of Dr. Karst’s team have generated what Dr. Averill considers some of the most compelling evidence for the wood-wide web.

“It’s very clear that in some forests in some places, different trees are absolutely connected by fungi,” he said.

Dr. Klein of the Weizmann Institute said his team has placed its speculation about a network on firmer ground by using DNA sequences to map fungi in a 2020 follow-up study of the same Swiss forest and a 2022 lab study using forest soil. (Dr. Karst and her colleagues said that in their view, even those studies did not truly map fungal networks in a forest.)

And while Dr. Klein agrees that scientists still need to improve their understanding of why trees and fungi are moving all that carbon around, he is more optimistic than the Karst team that some of the bolder claims will be born out.

“If you ask me if in the future, we will be showing that trees actually can communicate, I would not be surprised,” he said.

Dr. Simard, the University of British Columbia scientist who has studied the wood-wide web, says that mapping fungal networks in forests is challenging, but other methods convinced her they are common.Credit…Jennilee Marigomen for The New York Times

Dr. Simard agreed that few real-world fungal networks have been mapped using DNA microsatellites because of the difficulty in doing such studies. Kevin Beiler, the graduate student who led the field work for the 2012 study with Dr. Simard, “spent five years of his life mapping out these networks,” Dr. Simard said. “It’s very time consuming.”

“The field of mycorrhizal networks has been sort of plagued by having to keep going back and redoing these experiments,” Dr. Simard said. “At some point you have to move to the next step.”

Comprehensive field studies of the type Dr. Hoeksema seeks would be a heavy lift for most university scientists working on typical grant timelines, Dr. Simard said. “None of these studies can do everything all at once, especially when you’re working with graduate students,” she said. “You have to piece it together.”

And while Dr. Simard has for years called for forest managers to consider her findings, she said she was not aware of any forest being managed solely on behalf of fungal networks. Neither was Mr. Wohlleben.

The new critique is the latest flare-up in a decades-old debate about the role of fungi in forest ecosystems, said Merlin Sheldrake, an independent mycologist whose book “Entangled Life” was referenced in the “Ted Lasso” episode that alarmed Dr. Hoeksema. Scientists have long struggled to interpret intriguing but fragmentary shreds of evidence from the invisible underground realm.

Since Dr. Karst gave her talk, she, Dr. Hoeksema and Dr. Jones have submitted a paper to a peer-reviewed journal. And lest you worry that a less webby woods could feel a tad drab, the researchers maintain that there’s plenty of intrigue even if it turns out that trees aren’t whispering secrets to each other via subterranean fungal channels.

“The true story is very interesting without this narrative put on it,” Dr. Karst said. The forest “is still a very mysterious and wonderful place.”

New Biology Chair Aims to Lift Program to New Heights

Posted on: October 25th, 2022 by cnstewa1 No Comments

Sixue Chen brings focus on plant efficiency and desire to increase student opportunities

OXFORD, Miss. – Sixue Chen, an accomplished biological researcher and new chair of the Department of Biology at the University of Mississippi, plans to use agricultural research and outreach to elevate the program nationally.

Chen, who specializes in systems biology of plant stress response, came to UM from the University of Florida, where he conducted research into understanding the mechanisms of more efficient plants in an effort to improve domestic agricultural practices.

His research is motivated by his childhood experience of growing up on a farm, but paradoxically, having little to eat. Chen believes that studying subjects such as the function of microscopic pores on plant leaf surfaces can reveal ways to improve agricultural practices and water conservation.

Sixue Chen, new chair of the Department of Biology, studies the mechanisms of more efficient plants in an effort to improve agricultural practices. Photo by Julia Dent

This approach could help to combat both world hunger and the imminent freshwater crisis as the climate becomes more arid and less conducive to current agricultural methods.

“One way to help stop food insecurity is to make plants more stress resilient,” he said. “After we domesticated the agriculture crops, farmers give these plants tons of water, which takes up 70% of our fresh water resources.

“They don’t consider making plants more drought-tolerant because they assume there will always be plenty of water, but that is not the case anymore. Around the world, countries are experiencing drought conditions, so my lab wants to make plants use water more efficiently, like cacti.”

Another concern related to modern agricultural practices is the effects of hazardous chemicals used for farming, Chen said. Some of these products increase the likelihood of cancer, as carcinogens, in humans who consume the produce or otherwise encounter the pesticides or herbicides.

This is a major concern as cancer is the nation’s No. 2 killer, behind heart disease.

Although he only recently joined the Ole Miss faculty, Chen already has a passion for helping the community and state – chiefly focusing on the future generation of scholars.

“We are a flagship university, so how do we help our citizens out of poverty?” he said. “If we encourage childhood education – make the kids excited to learn science and pursue education – I think that is one way to get out of poverty.

“I was a really poor kid growing up; at that time the only way to get out of poverty was education.”

Chen hopes to propagate a community of diverse, science-loving scholars at the university.

“Connections are important; social and academic events to bring people together provide more and more opportunities – not just for the people, but potentially for the whole world,” he said.

“The connections you make in college can become job opportunities or other collaborative opportunities to advance your career or science, as we know it, later down the line – all because a student had the chance to talk to someone with similar interests in their university.”

Chen’s work promises to improve education and research across the College of Liberal Arts and the entire university, said Donald Dyer, associate dean for faculty and academic affairs and distinguished professor of modern languages.

“His disciplinary know-how will translate into valued leadership and his experience will serve the department well in terms of mentorship and future departmental success. A successful researcher and grant recipient, he will oversee one of the larger faculties in the college and one of the largest undergraduate majors, among other things.”

STEM Facility Construction Nears Halfway Point

Posted on: October 13th, 2022 by cnstewa1 No Comments

Largest academic building in university history to feature innovative lab spaces, TEAL classrooms

The Jim and Thomas Duff Center for Science and Technology Innovation, in the university’s Science District, is on track to open in fall 2024. Construction began a year ago and is approaching the halfway point.

OXFORD, Miss. – Imagine standing in the atrium of the largest academic building in the history of the University of Mississippi‘s main campus. Looking up, four floors of laboratories and lecture halls are all dedicated to increasing STEM student success and teaching.

This vision is quickly becoming a reality as the Jim and Thomas Duff Center for Science and Technology Innovation is approaching 50% complete, and on track to open in fall 2024.

“This space will be a fantastic space,” said Chad Hunter, associate university architect. “It’s an incredible building because of its function, but also simply because of its size.”

The 202,000 square-foot facility will support science, technology, engineering and math-related endeavors at the university. It will include classrooms with low student-instructor ratios, as well as state-of-the-art undergraduate lab spaces. The building is anticipated to be one of the nation’s top facilities for STEM education.

Kurt Shettles, president and CEO of McCarty Architects, is the project’s architect of record. He said the center stands out among other buildings at Ole Miss because of its interdisciplinary nature and the broad audience that it will serve.

It is unique in many ways, one of which is the teaching style that it supports.

The Duff Center will include more than 50 TEAL classrooms, traditional labs and classrooms to accommodate some 2,000 students at a time. The building will be equipped with technology to support a range of teaching methods and support interactive learning.

“We’ve used the term ‘Swiss watch’ when referencing the science labs in the building,” Shettles said. “They are extremely intricate and designed for flexible teaching pedagogy.

“We have ‘TEAL’ classrooms, which are technology-enabled active learning classrooms. They support a different method of instruction with less lecture and more demonstration and participation. The students learn through the technology and the process of interacting and collaborating with each other, while the professor is more of a participant in that process, as opposed to just standing in front of the classroom lecturing.”

The Center for Science and Technology Innovation will include more than 50 TEAL classrooms, traditional labs and classrooms to accommodate some 2,000 students at any given hour throughout the day, Hunter said. It will also have a dedicated center for success and supplemental instruction, study rooms, a food service venue, more than 60 faculty offices and a 3D visualization lab, which is like a small IMAX theater.

The building is in the heart of the UM Science District. Construction is presently focused on the exterior – tasks such as installing windows, weatherproofing, waterproofing and laying brick. Once the exterior walls and roof are completed in the next couple of months, construction will begin on interior walls and finishes.

Cristiane Surbeck, chair and professor of civil engineering, can see the construction from her office window. She is eagerly anticipating the opening, which will have a major impact on her department.

“I’ve been taking a photo of it almost every day,” Surbeck said. “It’s going to provide a big upgrade to the teaching spaces that we have now. There’s going to be a specific room for civil engineering students to work on their senior design projects. It’s laid out for them to be able to work together in a space that is dedicated just for them.

“We are also going to have a water resources engineering and environmental engineering teaching lab that our students are really going to be able to take advantage of. It can even be shared among different departments if they have students who are doing experiments with water and environmental pollutants.”

The center will be an asset to the university community – especially its students, Surbeck said.

Among the many features of the Duff Center is an environmental engineering teaching lab that will provide a major resource for civil engineering students and anyone conducting experiments with water and environmental pollutants.

“I’m proud that we will have such a modern building that we are going to use to educate our engineering students,” she said. “I believe our engineering students are going to feel the same way. They are going to feel confident to go out and practice as engineers, having been educated in a such a high-quality facility.”

A new animated walk-through of the building’s interior gives viewers a better sense of the layout.

“You can see all four floors from the atrium; you can orient yourself by standing in it,” Hunter said. “The laboratories also have large windows, so you can observe what’s going on inside.

“It was designed this way on purpose to promote collaborative and interdisciplinary teaching and learning.”

Shettles said he hopes that once the center opens, students will find a home there.

“As designers, the best compliment we could receive would be to see students using this building even if they don’t have a class there,” he said. “We would love it to be a hangout destination for students simply because of the quality of the interior and exterior spaces, and because it promotes engagement and collaboration.”

Brothers Jim and Thomas Duff, of Hattiesburg, have committed $26 million to the construction of the building. The total project cost is $175 million, with $135 million in construction expenses.

Hunter has been part of the project since it was first imagined some 10 years ago.

“It’s a major honor to be part of this project,” he said. “To work so long on something and then seeing it actually being built is amazing.”

Undergraduate Student Publishes Sleep Research Paper

Posted on: October 3rd, 2022 by cnstewa1 No Comments

UM senior studies correlation between brain anatomy and sleep duration

FacebookTwitterLinkedInEmailCopy LinkSMSPrintFriendly

UM biology major Nicole Jones (left) and communication sciences professor Tossi Ikuta go over brain scans at the South Oxford Center. Under Ikuta’s supervision, Jones has been using the scans to explore how brain structure affects sleep. Photo by Thomas Graning/Ole Miss Digital Imaging Services

OXFORD, Miss. – A University of Mississippi senior has published a scientific paper on one of the most essential human needs: sleep.

Nicole Jones, a biology major in the Sally McDonnell Barksdale Honors College, is investigating whether the size of the caudate nucleus, a structural component of the brain, can be linked to how long people sleep.

“Research based on sleep has been very interesting to me,” Jones said. “I think it’s really cool that there isn’t much out there on it and it’s a hard concept to study.

“Based on what was available, I was able to narrow my project down to look at size-related data of different areas of the brain and sleep duration data.”

The paper, “Sleep Duration is Associated with Caudate Volume and Executive Function,” was published in Brain Imaging and Behavior’s online edition, with a print edition forthcoming. The bimonthly, peer-reviewed publication features research that uses neuroimaging to study higher brain function.

Tossi Ikuta, associate professor in the Department of Communication Sciences and Disorders, has advised Jones on her honors thesis and is co-author on the paper. Undergraduate student research is rarely published before a student graduates, he said.

“People with doctorate degrees strive to publish in this journal,” Ikuta said. “Nikki has accomplished her publication even before her bachelor’s degree.

“I have seen undergraduate students listed as one of the authors in a peer-reviewed journal. However, it is as unusual as an elementary school student doing linear algebra.”

Nicole Jones works alongside communication sciences professor Tossi Ikuta in his digital neuroscience lab at the South Oxford Center. She authored a paper recently published in a peer-reviewed scientific journal, a remarkable achievement for an undergraduate researcher. Photo by Thomas Graning/Ole Miss Digital Imaging Services

The caudate nucleus is a pair of structures within the medial part of the brain, the basal ganglia. The caudate is associated with high-level functioning such as memory, learning, reward and motivation. This level of functioning can be linked to sleep, Jones said.

“That’s why we started there,” Jones said. “We found that the size and volume of the caudate nucleus was correlated with sleep duration, which means the larger the size of the caudate was in the subject’s brain, the longer they would sleep.”

This was initially found across all age ranges in the study, which included more than 400 people ages 10-85. Upon closer investigation, Jones and Ikuta discovered that the association came primarily from the younger population.

The results bring scientists one step closer to understanding the role of the caudate in sleep, Ikuta said.

“The caudate nucleus is known to be involved in insomnia, but its role in sleep is not very clear,” he said. “We were able to show that the size of the caudate nucleus matters.”

Jones, a native of Nolensville, Tennessee, enrolled at Ole Miss based on its welcoming atmosphere. She had yet to realize the opportunities for firsthand research experience at the university.

“After touring the university in high school, I knew I wanted to come here,” she said. “It’s an intimate campus, but also big enough that I thought there would be lots of opportunities.

“I never realized that I would be publishing a paper – it was a huge surprise to me.”

After graduation, Jones hopes to continue on a path related to research and science in general. She said that her experience working with Ikuta grew her confidence in this area.

“Writing a journal and co-authoring with someone who is well-known in their field was really nerve-racking in the beginning, but Dr. Ikuta grew my confidence and put my ideas out there,” she said. “I would encourage other students to try research, even if it’s just dabbling in it on a volunteer basis.”